2023年3月25日 星期六

 

Examples of symplectic capacities

In this section we give the formal definition of symplectic capacities, and discuss a number of examples along with sample applications.

  1. Definition. Denote by Symp2n the category of all symplectic manifolds of dimension 2n, with symplectic embeddings as morphisms. A symplectic category is a subcategory of Symp2n such that (M, ω) implies (M, αω) for all α > 0.

    Convention. We will use the symbol Œ to denote symplectic embeddings and

    to denote morphisms in the category (which may be more restrictive).

    D ×

    Let B2n(2be the open ball of radius in R2n and Z2n(2B2(2R2nthe open cylinder (the reason for this notation will become apparent below). Unless stated otherwise, open subsets of R2n are always equipped with the canon-

    =1

    ical symplectic form ω0 Pdyj dxj . We will suppress the dimension

    2n when it is clear from the context and abbreviate


    WD B2n(1), WD Z2n(1).

    Now let Symp2n be a symplectic category containing the ball and the cylinder Z. A symplectic capacity on is a covariant functor from to the category ([01], (with ≤ as morphisms) satisfying

    ≤ !

    (MONOTONICITY): c(M, ω) c(r, ωrif there exists a morphism (M, ω) (r, ωr);

    (CONFORMALITY): c(M, αω) α c(M, ω) for α > 0; (NONTRIVIALITY): c(Band c(Z)< 1.

    Note that the (Monotonicity) axiom just states the functoriality of c. A symplectic capacity is said to be normalized if

    (Normalization): c(B1.

    As a frequent example we will use the set Op2n of open subsets in R2n. We make it into a symplectic category by identifying (U, α2ω0with the symplectomorphic manifold U, ω0for R2n and α > 0. We agree that the morphisms in this category shall be symplectic embeddings induced by global symplectomorphisms of R2n. With this identification, the (Conformality) axiom above takes the form

    (CONFORMALITYrcα2c(for Op2nα > 0.

  2. Examples of symplectic capacities

    In this section we give the formal definition of symplectic capacities, and discuss a number of examples along with sample applications.

    1. Definition. Denote by Symp2n the category of all symplectic manifolds of dimension 2n, with symplectic embeddings as morphisms. A symplectic category is a subcategory of Symp2n such that (M, ω) implies (M, αω) for all α > 0.

      Convention. We will use the symbol Œ to denote symplectic embeddings and

      to denote morphisms in the category (which may be more restrictive).

      D ×

      Let B2n(2be the open ball of radius in R2n and Z2n(2B2(2R2nthe open cylinder (the reason for this notation will become apparent below). Unless stated otherwise, open subsets of R2n are always equipped with the canon-

      =1

      ical symplectic form ω0 Pdyj dxj . We will suppress the dimension

      2n when it is clear from the context and abbreviate


      WD B2n(1), WD Z2n(1).

      Now let Symp2n be a symplectic category containing the ball and the cylinder Z. A symplectic capacity on is a covariant functor from to the category ([01], (with ≤ as morphisms) satisfying

沒有留言:

張貼留言

局部激發在一個垂直振動顆粒層

Localized excitations in a vertically vibrated granular layer  Paul B. Umbanhowar*, Francisco Melot & Harry L. Swinney 研究背景與目標 繁體中文...