2017年11月26日 星期日

系信

親愛的物理系同學們大家好:

當得知突然離世的消息,相信大家應該十分震驚與不捨!!年輕的生命就這樣離開,每個人心中都有著深深地遺憾與難過。不知道在他身旁的你,所經歷到的衝擊與影響是什麼?
諮商中心的大家十分關心在他周圍的家屬、好友與同學們,目前諮商中心已經啟動校園輔導關懷機制,針對主要接觸的師生及家屬給予適時地陪伴與相關的協助,不過仍擔心有些同學受到事件影響,因此發出此封關懷信,表達我們對你們的關心與問候。
在我們經驗到生命重大變故時,心理可能會產生悲傷、震驚、憤怒或否認等情緒反應,這都是正常的,但也需要適當的抒發。所以若你因此事件而心情低落、或有身體、心理的不適症狀,都鼓勵你運用平日的紓壓方式來因應,以及找人聊一聊、或者回家、或者給自己一個安靜、安全的空間獨處都好。若你想要透過心理諮商來談談此經驗,亦是非常的歡迎,可以先與我們聯絡、或者直接走來諮商中心。若身邊有朋友因此事件心情低落,請給予同理及傾聽,或已有身體、心理的不適症狀,也期待能陪伴他至諮商中心聊聊,讓我們陪你走過這段生命歷程。

人生中不免遇有一些意外或遺憾,讓我們很難承受,如果你或身旁的他人正經歷下面的狀態,誠摯的邀請您前來諮商中心。

為此感到很難過、很悲痛
擔心自己變得過度緊張、敏感
很擔心意外會再發生
覺得人好脆弱,人生好無常
覺得無力、無意義感,不知道該怎麼辦
害怕自己一個人獨處
身體可能出現的反應:疲倦、暈眩、失眠、發抖、做惡夢、噁心、心神不寧、呼吸困難、記憶力減退、注意力不集中、喉嚨及胸部感覺梗塞、心跳突然加快、肌肉僵硬酸痛(包括頭、頸、背痛)等。

清華大學諮商中心 http://counsel.web.nthu.edu.tw/bin/home.php
心知心文 BLOG http://lms.nthu.edu.tw/club/counsel
TEL: 03-5715131 Ext. 34725, 34726
E-MAIL: counsel@my.nthu.edu.tw  地點:醫輔大樓二樓

諮商中心關心您
喜樂平安!


諮商中心主任王道維與全體成員 謹上2017.1.3

終章

終章
    她睜開眼。
    白色,還是白色,在她身邊是一片白色。白色的牆,白色的窗簾。無止盡的嗶嗶聲,從童家樂的耳邊傳來。她的眼睛睜大似乎想看透天花板,卻沒有聚焦瞳孔如在海面漂移的浮球。她又閉上眼睛。
    直到知覺的浪潮將對柔軟床鋪的觸感一陣陣帶回她的皮膚臂膀,以致於大腿小腿,她才發現自己躺在醫院的床上。她想要起身卻使不上力,全身像是被無形的繩束縛著。時間無聲的流去。不知道過了多久,她在連綿不絕的莫名儀器聲響中想著一些不太清楚的回憶。媽媽,你在哪裡?你是不是不要我了?我會聽話,我會乖乖的。祥子也是。我們再去遊樂園玩嘛。大家一起去。爸爸,媽媽,還有祥子。比起話語更加像是從心裡浮現的千百種念頭,在腦海深處嗡嗡作響。童家樂勉強支撐起了身子,看到風從白色的簾走過。
喀啦、喀啦
    不知為何似乎聽到了那樣自從第一次接觸後每一次再聽都在耳後發癢的無比細碎的木几聲。她手上開始出汗,驚訝地轉向聲音的來源。
    那男孩就站在那裏,自顧自的,臉上沒有笑容,沉默的黑眼睛映在童家樂的眼中,整齊的短髮,正如她曾經看過好幾次的一樣。同樣的和服,木屐,他所在的角落也帶有古舊,不知是積久的灰塵,或著是採光所探勘不到的地方。他只是靜靜看著她的方向。童家樂這才發現男孩看自己的神情或是帶著某種渴望,那種感覺家樂說不上來的,像是幾次看著峒山一些孩子眼睜睜手中的紅氣球飄去含著淚的表情,只是男孩沒有哭。
    別怕,我在這裡。我們可以一起去玩,一起去遊……她想張口說話。想要傳達些什麼,卻擔心自己說出來的,會像是一篇不斷堆砌重複字句,累贅的小說的終章。
    「終於啊,」突如其來,響起了出乎預料大的聲音。童家樂幾乎要叫喊了出來。「你清醒了。」聲音繼續說,家樂立刻回頭一看,畫面跳接為白衣的男子和打開的門,手上一疊紙,衣服上紅線破舊繡著「鄒信──」,第三字只剩縫線脫落的人字邊,伴兩個小字「醫生」。童家樂眨了眨眼,這才發現醫師今天沒有戴眼鏡,難怪熟悉得陌生。
「你可真是常客啊。」醫師說,光這兩個月你就不知出入了幾次,好好保養身子,你的問題已經談過好幾次,能的話好好休息,夏天中暑還情有可原,但天氣都轉涼了,很明顯是壓力太大,這次昏迷的情形特別久……家樂一句也沒有聽進去,她趕緊回頭,卻只能呆呆愣住。
剛才的地方,凝視的雙眼再也不在那兒。
童家樂在在馬路疾走著,她有一件非常要緊的事要做。要緊到必須說服醫院讓她提早出院。即使醫師一再強調,依現在的生理狀況,出院只是讓疲勞成為身心的疥瘡並且蔓延罷了,但是醫師有他的堅持,家樂也有自己的。
    我必須回去。那孩子在等我。童家樂很清楚這一帶的路線,在抵達之前,最近的車站,走路不過十幾分鐘,沒有必要搭車,何況也沒有剛好停在目的地的站牌。
    墨跡雕花皆已不再完整……
    是的,她的也記憶模糊不再完整,卻在漸漸地回復,包括這三個月每天遊走在一個好幾十年來都在貯藏眾人回憶,甚至又一點一點的加入了她自己的記憶的地方。但是三個月隨著時間她日益奔忙,反倒早起來到這個地方途中,腳步常常不自覺拖慢,也許是因為一點點害怕混合著緊張,躲在大腦的某處?還是說一切都是因為那個孩子?那個孩子。焦慮的血液流竄到她的全身。我為什麼沒有想到?那個孩子需要幫助,要怎麼幫童家樂不確定,而現在她的腳步越來越匆忙,幾乎是用跑的了。沿途經過幾家餐廳以及一家中小規模的服飾店。只有我能夠看到他,這會是他找上我的原因。只是她不懂自己的著急,明明以後還有很多時間回去峒山,機會多的多的是。
    「鈴…………」劃破童家樂思緒的,是尖利的手機聲響,右肩的側包包震動著。猶豫著要不要接,她在趕時間啊。思索了幾秒,她停在路旁的加油站。包包打開塞了不少東西,畢竟最近也沒心情整理,化妝品、乳液等等散亂,家樂還看到一疊用迴紋針夾好的舊文件,一張白色信封邊緣翹起,以及一張泛黃的銀鹽相片,全家福的畫面,畫面正中央一個穿著和服的小男孩,靜止在時光中,開心的笑著。她想要阻止自己去想那張照片,急急地把手機靠在耳旁。
    「沒事吧!我聽說你最近進了好幾次醫院。」清脆的男聲,她認得這個聲音。「子淵?」她問。「怎會打給我?」「超擔心你的!本來好好的怎麼會出狀況呢?」子淵說,「你有沒有考慮我之前跟你說的?」童家樂還似懂非懂。子淵又補充,「就是辭職的事啊!」
    家樂的心猛顫了一下。她完全想起來了。包括自己曾經做過的事。這幾天睡得迷迷糊糊,母親來電她也是思緒和言語糾纏中搭理,根本忘記了她原本面對自己的脆弱其實已經撐不下去,而那個念頭早就盤踞腦海許久。
    她顫抖著放下電話,不顧電話那頭子淵「喂喂喂……樂樂你聽到嗎?」問句,用最快的速度從包包中找出那張白信封,一邊責怪自己怎麼一時忘記了,一邊打開。
    不,不見了。理論上應該還在裡面的啊。信封上面寫著「辭呈」兩字,筆跡是她的,墨色是新的,但是內部正如她對文件的下落的印象,空的。究竟是交出去了,還是只是弄丟了,透過記憶可以臨摹的最清晰輪廓,是她在遊樂園辦公室中,振筆寫著因為身體不適,不堪負荷,不能繼續勝任這個職務。她說服自己,不可能草率到直接提交上去。還有一個可能,是把本該收到信封的放在了桌上。但是,但是,她已經好多天沒去工作了,萬一,只是萬一,被同事看到了呢……
    所以她開始往遊樂園的方向跑去,祈求神能給她兩三分鐘的寬許。她的馬尾在後方擺盪,臉頰微微出汗,雖然是中午,仍很快就被一陣微微的西風帶去。腳步有點踉蹌,但是她現在只想要到達目的地。
    遊樂園的大門就在眼前,既熟悉又陌生。峒山兒童育樂中心的牌子依舊,也可以看見小麥色的大樓。她知道她在園史室所看到的東西,甚至只是這個地方的一小部分。愛之船的清涼到秋天大概已不那麼受歡迎,旋轉木馬還在自顧自地轉著,把已經漸漸奚落的笑聲和時間擰在一起,轉進來又轉出去。童家樂踏了進去,她想著那個男孩,連帶腦袋中的痛楚和轟轟聲愈來愈強烈,顯現出片段沾了血汙的畫面,混著爭吵的聲音,小女孩臉上的紅色痕跡一道道留下。喀拉喀啦的木屐聲。許多人用著濃厚的外省腔唱著國歌。有人用日語高聲說著,最近不只是台灣博覽會,最新型的遊樂中心也建成開幕啦。穿著白袍的人擦著眼鏡。一輛黑色有大大車頭燈的車子靠近,鳴著喇叭,直到喇叭聲震耳欲聾。一隻小小手上拿著的吊飾在搖晃。這些全部的一切,對童家樂來說或新或舊的畫面或聲響,都混在一起成為一部畫面和音效完全剪接失敗的蒙太奇電影。太過強烈了,強烈的噁心感襲來,她不禁抱著頭,閉上雙眼,放聲大叫。
    忽然一切歸於寂靜。過了幾秒,童家樂才慢慢地睜開眼。
    她真的來到目的地了。
    「弋經理,我相信你一定可以很吃得開。」秘書邊收拾東西邊說,「事實上,最近的人事異動很大呢。本來大家都以為峒山做不下去了,沒想到受到最近文化部的注意,說這裡很有歷史價值,沒多久就有新的款項下來了。」
    「叫我子淵就好了。」弋子淵笑笑。「其實我打算讓這裡轉型,誰說年輕人不重視歷史的?歷史就是我們最大的賣點。」
    他是靠遴選進來的,似乎園方有意在人事制度上做更審慎的考量。
    自從前任經理不知去向之後。
    子淵拚了命地在相關法規上下功夫,口條更是不用說,每天都對鏡子單口相聲,他甚至考慮到,萬一被問到未來規劃,要如何回答才能顯出眼界。
    當然正失業也是一個原因,但不是全部。弋子淵急需找到工作,但他有其他更好的選項。童家樂簡直就像是蒸發了。嘗試了好幾次聯絡她,卻連她的父母也連絡不上。子淵著急是著急,沒有放棄,直覺告訴他也許關鍵是最後工作的這遊樂園。也許執著真的能帶來什麼。考上經理後,子淵開始工作同時,也著手調查。他向同事打聽,但他們似乎都對這前任經理的印象漸漸淡忘。沒想到無意間從掃地阿姨口中聽到童家樂積極出入園史室的事。他勤奮工作,夜晚仍能看到他桌燈的光影,為了一點點線索。
    而今天,秘書又先又跟他道了別。桌上的滿滿紙堆,文字開始浮起,子淵揉揉眼,也許今天真的太累了。
喀啦、喀啦
他似乎聽見了什麼。是風吹動樹葉的聲音,還是有隻小蟲卡進了百葉窗隙。不,都不是,他想,比較像是有什麼東西撞擊地面的聲音。
「子淵。」異常熟悉的聲音響起。
    弋子淵四處張望,剛剛是聽錯了嗎?這個聲音絕不是第一次聽見,但是怎麼可能在這裡出現。圍繞著他的只有白色的牆,風聲在呢喃什麼讓人聽不清的囈語,桌燈有規律的閃滅著,他的影子被拉成長長的黑絲布黏貼在牆上,又在牆與地板的接縫被折成兩半,子淵突然覺得好冷,那是從內而外難以忍受的感覺,連靈魂都在顫抖。牆上褐色的圓形時鐘,秒針一直在七點二十一分五秒左右徘徊,來來回回的一直跳,時間似乎也跟著一起抖動,周圍的物品都被畫分成黑與白的兩種色調。多麼適合這冬天的冷,他在心裡想。
    如果在這時回了頭,弋子淵將會發現,一雙深色的冷眼睛,正冷冷望著他。
    童家樂在遊樂園中漫步著。
    天色不早了,周圍空蕩蕩的沒有一個人。許多的告示牌寫的都是日文字,她可以望見靠近出口的地方,由右至左寫著「兒童遊樂地」的字樣,正門異常地矮,跟她平常的印象相差許多。她也看到遠方的摩天輪,但是比應該要的高度矮得多車廂的形狀,也不太一樣。
    就是這裡啊。
    她忽然有一種意外的心情想哼首歌,一時想不到特別喜歡的,便隨口哼道: 
泥娃娃泥娃娃 
泥呀泥娃娃 
    隨口的調子,有一點走音,不過她愈唱愈起勁。這時摩天輪開始緩緩旋轉,旋轉木馬也動了起來。
我做她爸爸我做她媽媽 
    響起了木屐的聲音喀啦、喀啦。
永遠愛著她

    歌聲流動在風裡,而童家樂一個人慢慢走進遊樂園的深處,走進如血班流淌一地的夕陽光裡。

寬容

寬容
  「握緊拳頭,你掌握的僅只方寸;張開雙手,頃刻你擁有了全世界。」寬,是讓心開闊,不理會蝸角蠅頭的功利,不拘泥刀光劍影的奪爭。容,是打開自我唯有讓他人話語足跡走入自我的意識輿圖,人與人的壁壘才得以崩消瓦解。寬容二字,體現了一種人際間的和諧,對生命的坦然,對生命的直往。唯有寬容,得化干戈為玉帛,解冰山為源泉,也才得覓得內心的一望無涯。
  在齟齬與人時,需要寬容。寬容並非一味的容受和消極抵從,而是能夠承認人性固有的阿基里斯之腱,從他人的蠻橫來省察自身。法國哲學家諾沙區曼在一次講演中橫論滔滔,殊不知此時已有反對者蠢蠢欲動將以之顏色。正當講演如火如荼開展,突然台下遞上一張紙條,上僅書「蠢蛋」二字。反者此舉便是欲諾氏大動肝火以燃起爭端的火苗。怎知此際諾氏微微一笑,不慍不火地道:「方才有位敬愛的先生遞來發言函,但可惜他竟忘了書寫內容,只留下姓名。」此舉不僅示其人品超然,令對方自取其辱,更獲得一致敬重。
  在生命潮起潮落時,亦需要寬容。知名宇宙論者史蒂芬‧霍金本是不可一世的新銳學者,不幸天不予命,罹患「脊髓側索硬化症」而逐日失去舉手投足的自由。他彷彿被時間禁錮一方小小軀殼,只見歲月川息而自昇步向幽冥。但他卻寬容了命運亦寬容了自己,沒有以憂傷忉怛作為生命的結語,卻堅持在心中刻畫時空的形狀。他的身體如一塊磐石,但他的心卻大得足以容納整個宇宙。

  作家西村光太郎曾說:「我的前方沒有路,我的後方開拓路。」與人相交如是,遭逢困厄如是,心陷囹圄如是,面臨未知如是。只有寬容為心安上翅翼,翽翽其羽展向無境彼方,在寬容中,生命也重新活成一碧萬頃的悠然。

提醒

提醒
   夕陽捧著一臉笑顏為群山剪綵,預示著夜幕將要拉下;時針輪轉周行,轉瞬一匕雞鳴劃開月明星稀,又昭示將流瀉漫天的晨曦。觀一葉可以知秋替,見微物足可鑑更化。大自然總以各種若有似無的明示暗示,蘊藏玄理的蛛絲馬跡,提醒著人們萬物運作背後的諸般奧妙。
    鎮日昏昏醉夢的人們,栖栖皇皇衛生暨奔走的人們啊,往往是輕忽了造化鋪就的華麗織錦,眾般有序的鬼斧神工。既對自然的勝景習以為常,也就只有茫茫然而不見種種提示。幸是總有有心人的雙目,投注於看似尋常的疑點,一刻他們成為生命的福爾摩斯於戔戔細理中體察:世界諄諄不止的輕語提醒,提醒著不要失去像永恆之謎探究的勇氣。
    如同牛頓焚膏繼晷冥冥苦思,推敲琢磨星辰軌跡的脈絡機杼:托勒密留下了精確而令人困惑的三個定律,卻參不透更為精深的根本地基。徒留世人苦苦,管窺蠡測,千迴百折仍獻身五里霧。誰知一日蘋果樹下的午寢,一枚驟落的鮮紅,竟激起智慧靈光,如何日月升落運行不息,尋常果物卻執意向地心殞落?此般契機打開金鎖桎梏,人類的眼界頓然開闊,也點燃古典物理時代的星火與輝煌。
    豈僅因牛頓擁有異乎眾庶的慧眼,而是機運開啟忖度良久想法的萌櫱發芽。造物的提醒,每每在明說及暗點之間,在悄然無息和細簌輕響中,在不疑中有疑之暗縫幽光。一旦領會其意,就能解青山做飛屑,觀全牛知經理。然則大前提是,要有一扇晶亮目扉,一個願意開敞的心靈,足以容納嶄新風景;一於思維困頓躓踣中不肯止步,縱孤身孓然,依舊舉步邁向渺不可知的荒陬之地,所抱持的信心與堅定,不因蜿蜒曲折忘卻初心。
    愛因斯坦曾言:「這世界最難以理解之處,正是在於它可以被理解。」船桅自遠方來,遠眺先見端後顯底,潛藏地球為球型線索;正日蔚藍染渲穹頂,體現電磁光譜散射回折四方。大自然正是最擅織藝的巧匠,她的絲縷密而不糾,紋采斑斕精巧,每一小片織錦都顯示全體花樣。而好奇的生靈,總能於扣盤捫燭之中,感受她恰到好處的提醒,提醒我們對神祕的無知與嚮往。

104學年度上學期經典閱讀 第一份

********
104
學年度上學期經典閱讀
第一份文本分析報告
學號:104022   
姓名:
題目:
**********
事情的目的
對於蘇格拉底說服特拉敘馬柯的結果,葛勞共並不十分滿意。葛認為蘇沒有說服眾人公正良於不公正。
首先葛提出了幾個人們從事事情的分類:(1)為了事物本身而從事,即本身就是最終目的;(2)為了事物本身,也為了它帶來的後果好處;(3)僅僅只是為了事物所帶來的衍生好處而從事。蘇表示公正是屬於第二種,但葛卻以為眾人比較偏向第一種,因為保持公正本身不一定輕鬆。
頌揚不公正
葛認為特的說法即人公正並非出於本心,且不公正所能擁有的生活會更好。雖然他不能完全接受,但他決定以「盡力頌揚不公正」的方式來辯證公正與不公正的優劣。
葛從本性探討,究竟哪一個是較好或者較壞的?他認為大家必定認為行不公正能得到實質的好處,而人人都不要遭受不公正的事。因此人們制定法律約束能做及不能做的事,以免自己遭受損害。
葛論述對人們最好的情況是能行不義而不受損,最差則是須受不義不能報復。不能同時達到的結果,只好取之折衷,以法律社會契約來規範,以合法當作公正的準則。因此人們公正並非自願,而是妥協。
聚葛的指環
那麼對於公正與不公正的人,他們的內在實際是有差別的嗎?葛的回答是沒有。他舉「聚葛的指環」做例子。聚葛因為得到了隱形指環,得以為所欲為,最後聯合王后謀害國王篡位。如果一個人也得到指環,可以恣意行事,成為「人中之神」,那麼他還會照公正行事嗎?大概是不會的。因為不公正對他所帶來的好處多的多,如果一個人有了完美的不公正權力,卻不這麼做,將是愚蠢的。
兩種人的比較
接著葛以兩種不同人的極端來進行對比,以辯證公正的用處。一種是不義的極致,即使行不義之事,也可盡情享受不義帶來的好處,擁有公正的名聲,而不受損,這樣的人在利益上最高明;另一種是公正的極致,即使蒙受不義之名,也要保持公正。葛問,究竟是何者比較幸福呢?
公正的極致者由於顯得不公正,所以要經歷種種的苦痛,葛認為當苦痛太大超過公正的任何好處時,公正者終究就會了解,不公正才是務實的。而不公正的極致者,在生活中可以享受種種好處,即使死後有可能獲得處罰,甚至也可利用身前
外觀勝過真相
阿兌滿多對此做了補充。他認為,一般探討公正的人,要嘛是喜歡公正的名聲,要嘛就是因為神會對公正降幅,不公正降惡。又考慮一般人的言論,他們認為公正本身太過辛苦,且他們的確認為神會給予公正的人較為辛苦的生活。並且即使運氣與神也可被祭祀和咒語操作,則保持公正的吸引力和必要性就更低了。也就是說「外觀勝過真相」。阿於是要求蘇格拉底,應該具體的說明,「公正」對靈魂有什麼價值。
本質的問題

不公正雖然可使人看不出來,卻是不容易做到的。阿認為雖然如此,┬般大事情也都不容易做到,只要得到不公正的方法,好處將更多。如果公正不過是一個基於面子名聲的關係,那麼所有對其的讚揚無非是可笑的。阿要蘇格拉底回到本質,去探討「公正」是否有本身的好處(即第一段所說的分類)。這樣大家才能夠自己說服自己去做公正的事,為了公正而公正。

鬼影幢幢Week 6 Handout 4

University
Department of Humanities and Social Sciences
Haunting and the Haunted: ghost stories, films and gender
鬼影幢幢:鬼故事,鬼片,性別

Instructor: Elizabeth  LEE 
TA: Jim WU
   Nver3591@
19 October 2015
Week 6 Handout 4
I.                 The Gothic: excerpts from Barbara Fuchs’s Romance (New York: Routledge, 2004)
a.      ‘Romancing the Gothic’
1)     Founding rationale: ‘By the mid-eighteenth century, literary scholars in Germany, France, and England were reacting to the dictates of neoclassicism, questioning its privileging of reason, order and proportion. The gradual construction of a “Gothic” tradition to counter the classical legacy of Greece and Rome involved a rediscovery of the literary heritage of the Middle Ages and Renaissance, which had largely been neglected in favour of the classics’ (117-8)
2)     Origins: ‘In the narrow sense, “Gothic” referred primarily to the production of ancient Northern Europeans, the Goths or barbarians who had opposed Rom with their own traditions of liberty and social or organisation’. More broadly, the Gothic designated everything that was not classical: both the vernacular works of the Middle Ages, and those Renaissance texts that eschewed the “rediscovered” classical heritage in favour of “native” traditions’ (118).
3)     Aesthetic merits: 18th century English critics Richard Hurds said of the Gothic to be ‘the more sublime and creative poetry … addressing itself solely or principally to the Imagination’, need not observe the same ‘curious rules of credibility’ (cited from Fuchs 2004, 118-9). ‘Thus, not only is the Gothic recuperated, it surpasses the classical in its direct address to the imagination, becoming the poetic wellspring par excellence’ (119).
b.     Gothic as a genre
1)     Genre characteristics: ‘From its beginnings, the Gothic romance, or novel, is explicitly presented as a mixture of new and old’ (119).
2)     Beginning: ‘The genre is self-consciously inaugurated by Horace Walpole, with The Castle of Otranto (1764), a fantastically popular tale that has appeared in over 100 editions since ifs first publication; (119).
3)     Conventions: ‘Otranto established some of the most enduring conventions of the genre: ancient castles complete with secret vaults and passageways; family secrets; obscure prophecies; ghosts and apparitions; hidden identities. More importantly, it exacerbates the narrative tension attendant on what Richetti calls “persecuted innocence,” a constant among various forms of popular narrative in the eighteenth century, which in this case involves an innocent princess pursued by the lascivious and immortal father of the prince she was to wed’ (119).
4)     Strange Place: ‘despite Walpole’s emphasis on nature, and the rationality attributed to his contemporary and what makes the Gothic so popular is precisely its gallery of marvelous and otherworldly topoi’ (121).
5)     Terror: ‘These “well-wrought scenes of artificial terror which are formed by a sublime and vigorous imagination,” critics conjured, provided a particular kind of pleasure, in which the imagination “rejoices in the expansion of its powers,” so that “the pain of terror is lost in amazement” (121-2).
The Turn of the Screw (1898), excerpts from Priscilla Walton’s ‘“He took no notice of her; he looked at me”: Subjectivities and Sexualities in The Turn of the Screw’ in Peter Beidler’s edition of The Turn of the Screw (Boston: Bedford/St Martins’s, 2013) 3rd edition.
1)     Critical heritage: ‘The Turn of the Screw is one of James’s more enigmatic tales. Although it was written over a century ago, it continues to intrigue readers and attract critical and creative attention. It has been transformed into an opera by Benjamin Britten (first performed in 1954), and has inspired a number of films, such as The Innocents (1961)’ (348).
2)     Key issues: gazing, visibility and invisibility, gender panic at the end of Victorian age, suffragette’s movements, the fear of governess’s sexuality in the Victorian era, women as unreliable narrator, ghost stories.
II.               Reflections on ghost stories:
Personal Assignment
Write a short essay on the treatment of women in Poe’s ‘The Fall of the House of Usher’ and James’s ‘The Turn of the Screw’ in the context of Gothic and ghost stories.




Critic of Philosophy of Social Science Chapter 9

Critic of Philosophy of Social Science
Chapter 9 Holism and Antireductionism in Sociology and Psychology
104022
Thursday, June 9, 2016
Abstract
This chapter deal with the holism of social science. At first, Rosenberg talked about the definitions of holism and functionalism. Then, he talks about the theory of Durkheim and why it can connect to the core of holism. Rosenberg then compare the holism with rather different reductionism, and discusses the differences. And he uses the concept of supervinience to support the holism. 
The Social Facts and the Holism
The social science deals not only psychological personal actions but also some distinctive social facts. These facts are is objective and not belong to a singular person. They can be observed as the behavior of a group of people. In this case, the idea of the existence of special differences of social facts when we counts large amount of people are called holism. Some people will argue that if there really exists group behaviors that cannot be described by personal causes and actions. Of course, the very complex collective behavior cannot easy be constructed by the units they consist of. Sometime it is just like a ‘’collective conscious’’ making decisions.
Holism relates to another feature of social science—functionalism, which is the method of understand features of society by their ‘’functions’’. On the other side, the methodological individualists claim that all social facts can be explained by generalizing individual behavior and the idiom [L] mentioned in the previous chapters. Traditional aspects from methodological individualists thinks that all the results should only be translated to observations. The failure of this point of view is that it abandons too much of explanatory ability, and the holists do not do so. They imply that the descriptions of social facts should apply the best explanatory functions.
One of the important view that holists holds is that the whole is more than just a group of people. In other words, they may be two kind of social facts, one about the group, and one about the single person. For them, the social facts should supply evidences to the beliefs and ideas. However, this argument do not explain how the small parts influence the whole. To make the viewpoint more convincing, they need a more powerful argument to stand for their idea.
Autonomy of Society
Some sociologists have studied social facts by applying the holism. One example is Durkheim’s research. He analyzed suicide cases, and found out that the suicide cases rises up at some period of time. It is not easy to explain by personal psychology factors. He summed up three different causes of suicide, which are altruistic suicide (too much of social integration), egoistic suicide (too little social integration), and anomic suicide (caused by great and rapid changes of society). He thinks the suicide cases are mainly caused by the structure of the entire society in the meantime. It seems that Durkheim take the view that the society is a whole, integrated, organic unity (which can be describe by the ‘autonomy of society’ or ‘the group mind’). By Durkheim, the so-called the mental states of a person is also a manifestation of the entire society.
Reductionism
If the psychological laws are helpful, they could link the social integrations in to personal psychology, i.e. the sociology is reducible to psychology. This is the opposite of holism because the holists claims that there are always something that cannot be reduced. One of the methods to still apply holism is to view psychology and the mental changes as appendix phenomena. It not caused suicide but is a by-product from a causing-suicide society. Also, the problem with reductionism is that many phenomenon are just too difficult to reduce in to simple laws. We can only describe nearly right general laws in a much more huge scale—the macroscopic scale.
Even in natural science, there are always subjects that cannot reduce to a more fundamental subject in the near future. Rosenberg claims that maybe we can never view social facts as psychological facts even if all the psychological theory is very complete.  That is to say, the social facts can though as a more fundamental and metaphysical laws not just by methodological meaning.
Supervenience
Rosenberg also mentions the philosophical concept of supervenience and multiple realizablity. This means any being can be observed must obey:
(a) This object will have certain kind of composition.
(b) If another subject have exactly the same composition, it will have the same function--supervenience.
(c) There are always multiple ways to form an object that is concluded in some kind of concept (e.g. chair, desk, pencil, person, etc.) – the multiple realizablity.
It is hard to find a term in social science that is not defined by its functions. If the function was defined, we will see the supervenience and multiple realizations it bring. The compositions it supervenes could be actions and behaviors. Rosenberg strongly suggests that the social facts are not easy reducible because the object is not just the sum of all its compositions, and this part stands for the point of view of holists.
Personal Opinions
After reading all the articles, I think it is an interesting to discuss about if it is really impossible to prove all social facts by psychological laws. I think it is not very realistic. There are three reasons:
(1) The psychological laws are not absolute; they are not so precise like physics laws.
(2) The social facts are much more complex than a single person’s thinking. There will be a lot of factors produced by the environment, and it will also be influenced by the composition of the society.
(3) It is very hard to set experiments to prove the relationship between personal laws and the social laws.
However, we can still try to guess what will happen in the future by the laws we have known. 
Reference

Rosenberg, Alexander (2016). Philosophy of Social Science (fifth edition), Westview press, ISBN 978-0813345925



Philosophy of Social Science Chapter 6 Critic

Philosophy of Social Science Chapter 6 Critic
1040221 
 Shuey

Abstract
In this chapter the author discusses the reliabilities of rational choice theory, which implies that the human take the action of the maximized utility. The economists use the theory to construct the predictions of human action. The author introduced the cardinal utility theory, the marginal utility, and the instrumentalism view of the theories. These theories may not perfectly express how human do when they are making choices for a behaviorist because being too psychological, but they are sometimes useful. 

The Theory of Rational Choice
The Theory of Rational Choice takes a great part on the economics. It was a way of ordering desires. From the law [L] mentions in the previous parts of the book, the actions are related to desires. Thus, the marginalists transformed it to an assumption that people do things rationally. That is, between all the choices, people will do the most beneficial one. They call the additional utilities gained from one unit of commodity the marginal utility. By using the idea, they can construct relationship between quantity and price, finally predict the market-clearing equilibrium. Farther, they think the equilibrium will happen naturally, so the government don’t need to do much planning. The phenomena is called by Adam Smith the invisible hand. The preference of a person was called ‘’cardinal utility’’, which is absolute.
However, is this theory really true? It seems not so in many cases, but we do not have a way to test if the utilities are deceptive or not. In order to analyzing the theory of rational choice mathematically, they assumed the ‘’ordinal preference’’:
1. The utility of commodities is comparable.
2. The utility of commodities have transitivity, i.e. a>b and b>c then a>c.
3. People are rational and will choose the commodity that maximizes the utility.
This kind of utility is only relative and only concerns about the behavior (what people choose).

Behaviorism and Instrumentalism
The cardinal utility still have failures. People may change through time, and it is difficult to know if people really does things rationally. For the behaviorists, it is still too psychological. If we come to desire and implicit utilities, it is psychology.
  Another kind of view is the instrumentalism. It takes a useful theory only as a tool to systemize human actions. The terms desire and belief are merely nouns invented to be useful. It comes up with the view of a ‘’black box’’, that is, we can only deal with the ‘’inputs’’ and ‘’outputs’’ of a person, not going to understand mental reality. And all the theories applied to economy is just models.
One of the idealized theory invented to predict general equilibrium assume that:
1. Agents are rational.
2. Agent can complete information.
3. Commodity are infinity divisible.
4. The production efficient always remains the same.
5. Purchasing and selling can be done in any time.
These assumptions can be analyzed with mathematics and prove the existence of equilibrium. Through the assumptions may be too idealized, they are essential in economics because they can make predictions in some range of error. The instrumentalists do not care about is the theory really true or whether they can applied to human mind. They just care if the theory is practical or not.
Here comes another point. A practical view still should be tested by experiment. Without testing, we can never know our predictions really come true in given conditions. It is also true in natural sciences and all the idealized theories and laws.

The Benefits of Psychology
Only if we view economics theories as instruments can we applied idealized assumptions and psychology to real word. The author claims that some progress in psychology can also benefit the predictions of economics. New psychological phenomenon are found and studied every day. These results can someday be used in economics and other social sciences, even though we can hardly what human mind really is.

Personal Opinions

I think that the psychological view of [L] seems very easy to accept at first sight. In fact, it is hard to prove. When using rational choice theory to the complex society, we often found it too difficult to control all the variations. However, maybe we can observe the human society and economical behaviors with the statistical methods to find some new laws.   

Grothendieck universe

Grothendieck universe
From Wikipedia, the free encyclopedia.
Jump to: navigation, search
In mathematics, a Grothendieck universe is a set with the following properties:
1.     If x  U and if y  x, then y  U.
2.     If x,y  U, then {x,y}  U.
3.     If x  U, then P(x)  U. (P(x) is the power set of x.)
4.     If  is a family of elements of U, and if I U, then the union  is an element of U.
A Grothendieck universe is meant to provide a set in which all of mathematics can be performed. (In fact, it provides a model for set theory.) As an example, we will prove an easy proposition.
Proposition 1.
If x  U and y  x, then y  U.
Proof.
y  P(x) because y  x. P(x)  U because x  U, so y  U.
It is similarly easy to prove that any Grothendieck universe U contains:
  • All singletons of each of its elements,
  • All products of all families of elements of U indexed by an element of U,
  • All disjoint unions of all families of elements of U indexed by an element of U,
  • All intersections of all families of elements of U indexed by an element of U,
  • All functions between any two elements of U, and
  • All subsets of U whose cardinal is an element of U.
In particular, it follows from the last axiom that if U is non-empty, it must contain all of its finite subsets and a subset of each finite cardinality. One can also prove immediately from the definitions that the intersection of any class of universes is a universe.
Grothendieck universes are equivalent to strongly inaccessible cardinals. More formally, the following two axioms are equivalent:
(U) For all sets x, there exists a Grothendieck universe U such that x  U.
(C) For all cardinals κ, there is a strongly inaccessible cardinal λ which is strictly larger than κ.
To prove this fact, we give explicit constructions. Let κ be a strongly inaccessible cardinal. Say that a set S is strictly of type κ if for any sequence sn  ...  s0 S, |sn| < κ. (S itself corresponds to the empty sequence.) Then the set u(κ) of all sets strictly of type κ is a Grothendieck universe of cardinality κ. The proof of this fact is long, so for details, we refer to Bourbaki's article, listed in the references.
To show that the large cardinal axiom (C) implies the universe axiom (U), choose a set x. Let x0 = x, and for all n, let xn = x be the union of the elements ofx. Let y = nxn. By (C), there is a strongly inaccessible cardinal κ such that |y| < κ. Let u(κ) be the universe of the previous paragraph. x is strictly of type κ, so x  u(κ). To show that the universe axiom (U) implies the large cardinal axiom (C), choose a strongly inaccessible cardinal κ. κ is the cardinality of the Grothendieck universe u(κ). By (U), there is a Grothendieck universe V such that U  V. Then κ < 2κ ≤ |V|.
In fact, any Grothendieck universe is of the form u(κ) for some κ. This gives another form of the equivalence between Grothendieck universes and strongly inaccessible cardinals:
For any Grothendieck universe U, |U| is a strongly inaccessible cardinal, and for any strongly inaccessible cardinal κ, there is a Grothendieck universe u(κ). Furthermore, u(|U|)=U, and |u(κ)|=κ.
Since the existence of strongly inaccessible cardinals cannot be proved from the axioms of Zermelo-Fraenkel set theory, the existence of universes cannot be proved from Zermelo-Fraenkel set theory either.
The idea of universes is due to Alexander Grothendieck, who used them as a way of avoiding proper classes in algebraic geometry.
[edit]
References
Bourbaki, N., Univers, appendix to Exposé I of Artin, M., Grothendieck, A., Verdier, J. L., eds., Théorie des Topos et Cohomologie Étale des Schémas (SGA 4), second edition, Springer-Verlag, Heidelberg, 1972.
Views
Personal tools
Navigation
Search
Top of Form
  
Bottom of Form
Toolbox

Grothendieck universe

From Wikipedia, the free encyclopedia
In mathematics, a Grothendieck universe is a set U with the following properties:
1.     If x is an element of U and if y is an element of x, then y is also an element of U. (U is a transitive set.)
2.     If x and y are both elements of U, then {x,y} is an element of U.
3.     If x is an element of U, then P(x), the power set of x, is also an element of U.
4.     If \{x_{\alpha }\}_{{\alpha \in I}} is a family of elements of U, and if I is an element of U, then the union \bigcup _{{\alpha \in I}}x_{\alpha } is an element of U.
Elements of a Grothendieck universe are sometimes called small sets.
A Grothendieck universe is meant to provide a set in which all of mathematics can be performed. (In fact, uncountable Grothendieck universes provide models of set theory with the natural -relation, natural powerset operation etc.) As an example, we will prove an easy proposition.
Proposition. If x\in U and y\subseteq x, then y\in U.
Proof. y\in P(x) because y\subseteq x. P(x)\in U because x\in U, so y\in U.
The axioms of Grothendieck universes imply that every set is an element of some Grothendieck universe.
It is similarly easy to prove that any Grothendieck universe U contains:
·        All singletons of each of its elements,
·        All products of all families of elements of U indexed by an element of U,
·        All disjoint unions of all families of elements of U indexed by an element of U,
·        All intersections of all families of elements of U indexed by an element of U,
·        All functions between any two elements of U, and
·        All subsets of U whose cardinal is an element of U.
In particular, it follows from the last axiom that if U is non-empty, it must contain all of its finite subsets and a subset of each finite cardinality. One can also prove immediately from the definitions that the intersection of any class of universes is a universe.
The idea of universes is due to Alexander Grothendieck, who used them as a way of avoiding proper classes in algebraic geometry.
The concept of a Grothendieck universe can be defined in a topos. [1]

Grothendieck universes and inaccessible cardinals[edit]

There are two simple examples of Grothendieck universes:
·        The empty set, and
·        The set of all hereditarily finite sets V_{\omega }.
Other examples are more difficult to construct. Loosely speaking, this is because Grothendieck universes are equivalent tostrongly inaccessible cardinals. More formally, the following two axioms are equivalent:
(U) For each set x, there exists a Grothendieck universe U such that x  U.
(C) For each cardinal κ, there is a strongly inaccessible cardinal λ that is strictly larger than κ.
To prove this fact, we introduce the function c(U). Define:
{\mathbf  {c}}(U)=\sup _{{x\in U}}|x|
where by |x| we mean the cardinality of x. Then for any universe U, c(U) is either zero or strongly inaccessible. Assuming it is non-zero, it is a strong limit cardinal because the power set of any element of U is an element of U and every element of U is a subset of U. To see that it is regular, suppose that cλ is a collection of cardinals indexed by I, where the cardinality of I and of each cλ is less than c(U). Then, by the definition of c(U), I and each cλ can be replaced by an element of U. The union of elements of Uindexed by an element of U is an element of U, so the sum of the cλ has the cardinality of an element of U, hence is less thanc(U). By invoking the axiom of foundation, that no set is contained in itself, it can be shown that c(U) equals |U|; when the axiom of foundation is not assumed, there are counterexamples (we may take for example U to be the set of all finite sets of finite sets etc. of the sets xα where the index α is any real number, and xα = {xα} for each α. Then U has the cardinality of the continuum, but all of its members have finite cardinality and so {\mathbf  {c}}(U)=\aleph _{0} ; see Bourbaki's article for more details).
Let κ be a strongly inaccessible cardinal. Say that a set S is strictly of type κ if for any sequence sn  ...  s0  S, |sn| < κ. (Sitself corresponds to the empty sequence.) Then the set u(κ) of all sets strictly of type κ is a Grothendieck universe of cardinality κ. The proof of this fact is long, so for details, we again refer to Bourbaki's article, listed in the references.
To show that the large cardinal axiom (C) implies the universe axiom (U), choose a set x. Let x0 = x, and for each n, let xn+1 = \bigcup xn be the union of the elements of xn. Let y = \bigcup _{n}xn. By (C), there is a strongly inaccessible cardinal κ such that |y| < κ. Let u(κ)be the universe of the previous paragraph. x is strictly of type κ, so x  u(κ). To show that the universe axiom (U) implies the large cardinal axiom (C), choose a cardinal κ. κ is a set, so it is an element of a Grothendieck universe U. The cardinality of U is strongly inaccessible and strictly larger than that of κ.
In fact, any Grothendieck universe is of the form u(κ) for some κ. This gives another form of the equivalence between Grothendieck universes and strongly inaccessible cardinals:
For any Grothendieck universe U, |U| is either zero, \aleph _{0}, or a strongly inaccessible cardinal. And if κ is zero, \aleph _{0}, or a strongly inaccessible cardinal, then there is a Grothendieck universe u(κ). Furthermore, u(|U|)=U, and |u(κ)| = κ.
Since the existence of strongly inaccessible cardinals cannot be proved from the axioms of Zermelo-Fraenkel set theory (ZFC), the existence of universes other than the empty set and V_{\omega } cannot be proved from ZFC either. However, strongly inaccessible cardinals are on the lower end of the list of large cardinals; thus, most set theories that use large cardinals (such as "ZFC plus there is a measurable cardinal", "ZFC plus there are infinitely many Woodin cardinals") will prove that Grothendieck universes exist.

See also[edit]

·        Constructible universe
·        Inaccessible cardinal
·        Universe (mathematics)
·        Von Neumann universe

References[edit]

1.      Jump up^ Streicher, Thomas (2006). "Universe in a Topos". From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics. Clarendon Press. pp. 78––90. ISBN 9780198566519.
Bourbaki, Nicolas (1972). "Univers". In Michael Artin, Alexandre Grothendieck, Jean-Louis Verdier, eds. Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 1 (Lecture notes in mathematics 269) (in French). Berlin; New York: Springer-Verlag. pp. 185–217.
·        Set-theoretic universes
·        Category theory
·        Large cardinals


·        Edit links
·        This page was last modified on 10 February 2014 at 21:16.
·        Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Useand Privacy Policy. 
Wikipedia® is a registered t


局部激發在一個垂直振動顆粒層

Localized excitations in a vertically vibrated granular layer  Paul B. Umbanhowar*, Francisco Melot & Harry L. Swinney 研究背景與目標 繁體中文...